
Peter R. Pietzuch
prp@doc.ic.ac.uk

How Event-Based Systems
Took Over The World:

Peter Pietzuch

Large-Scale Distributed Systems Group
Department of Computing, Imperial College London

http://lsds.doc.ic.ac.uk

DEBS 2016 – Irvine, CA, USA

prp@imperial.ac.uk

Combining Performance
with Complex Algorithms

Events Are Everywhere

• More data created than ever
– Generated 2.5 Exabytes (billion GBs) each day in 2015

• Many new sources of event data become available

• Storage and networking costs become cheaper
– Hard drive cost per GB dropped from $8.93 (2000) to $0.03 (2014)

2

Mobile
devices Scientific

instruments

CamerasSocial feeds IoT
devices

Internet services,
web sites

RFID
tags

Data
repositories

Peter Pietzuch – Imperial College London

E Many applications want to exploit these events in real-time…

Intelligent Urban Transport

3

• Instrumentation of urban
transport

– Induction loops to measure
traffic flow

– Video surveillance of hot spots
– Sensors in public transport

• Potential queries
– How to detect traffic

congestion and road
closures?

– How to explain the cause of
congestion (public event,
emergency)?

– How to react accordingly (eg
by adapting traffic light
schedules)?

Peter Pietzuch – Imperial College London

Real-Time Web Analytics

• Potential queries
– How to uniquely identify web site visitors?
– How to maximize user experience with

relevant content?
– How to analyse “click paths” to trace most

common user routes?

• Example: Online predictions for
adverts to serve on search engines

4

Hits

Page Views

Visits

Unique Visitors

Uniquely Identified Visitors

Volume of Available Data

…
f1

fn

y E {−1,1}

predict

update

Peter Pietzuch – Imperial College London

• Solution: AdPredictor
– Bayesian learning algorithm

ranks ads according to click
probabilities

Social Data Mining

5

Twitter Cascade
Detection

Peter Pietzuch – Imperial College London

Applications Follow An Event-Based Model

6

Event streams

Results

Users

ApplicationsEvent-based
System

Event
producers

Event
consumers

Subscriptions,
Queries

Loose coupling
(results in

scalable design)

Peter Pietzuch – Imperial College London

Challenge 1: Performance Matters!

…

High-throughput streams

Facebook Insights: Aggregates 9 GB/s < 10 sec latency
Feedzai: 40K credit card transactions/s < 25 ms latency
Google Zeitgeist: 40K user queries/s (1 sec windows) < 1 ms latency
NovaSparks: 150M trade options/s < 1 ms latency

Low-latency results

7Peter Pietzuch – Imperial College London

Event-Based
System

Challenge 2: Complex Algorithms Matter!

8

…
Share state

Aggregate

Iterate…

Pre-process

Parallelize
…

Online machine
learning, data

mining

Peter Pietzuch – Imperial College London

Topic-
based
filtering

Content-
based
filtering

Complex
pattern

matching
Stream
queries

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

T1

T2

T3

T1(a, b, c)

T2(c, d, e)

T3(g, i, h)

Publish/Subscribe Complex Event
Processing (CEP)

Stream
processing

Challenge 2: Complex Algorithms
How to support online machine learning algorithms
over events?

Challenge 1: Performance
How to exploit parallelism on modern hardware independently
of processing semantics?

Roadmap

• Introduction to Event-Based Systems

9

• Conclusions

Peter Pietzuch – Imperial College London

What Is An Event?

10

An event is a happening of interests. An event type is a
specification of a set of events of the same structure and
semantics.
[Etzion and Niblett (2011)]

• Events can have fixed relational schema
– Payload of event is a set of attributes

highway = M25
segment = 42
direction = north
speed = 85

Vehicle speed data

Vehicles(highway, segment, direction, speed)

Peter Pietzuch – Imperial College London

What Is An Event Stream?

• Event stream is an infinite sequence of events
– Assume associated timestamp (eg time of reading, time of arrival, …)

11

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

timeEvent stream

t1 t2 t3 t4 ...

Peter Pietzuch – Imperial College London

E But we have an infinite amount of data to process…

window

How Many Events To Process?

• Windows defined finite set of events for processing
– Process events in window-sized batches

12

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

highway
segment
direction
speed

now

Peter Pietzuch – Imperial College London

Time-based window with size τ at current time t
[t - τ : t] Vehicles[Range τ seconds]

Count-based window with size n:
last n events Vehicles[Rows n]

• Window converts event stream to dynamic relation (database table)
– Similar to maintaining database view
– Use regular relational algebra operators on tuples

How To Define Event Queries?

Streams Relations

Window specification

Special operators:
Istream, Dstream, Rstream

Any relational
query

(select, project,
join, group by, etc)

13Peter Pietzuch – Imperial College London

CQL: SQL-Based Declarative Queries

CQL provides well-defined semantics for event/stream queries
– Based on well-defined relational algebra (select, project, join, …)

• Example: Identify slow moving traffic on highway
– Find highway segments with average speed below 40 km/h

14

select highway, segment,
direction, AVG(speed) as avg

from Vehicles[range 5 sec slide 1 sec]
group by highway, segment, direction
having avg < 40

Peter Pietzuch – Imperial College London

Input stream

Output

Operators

E Principled way to define event processing semantics…

Stanford,
2003

Challenge 2: Complex Algorithms
How to support online machine learning algorithms
over events?

Challenge 1: Performance
How to exploit parallelism on modern hardware independently
of processing semantics?

Roadmap

• Introduction to Event-Based Systems

15

• Conclusions

Peter Pietzuch – Imperial College London

How To Scale Big Data Systems?

• Use scale out
– Commodity servers
– Fast network fabric

• Software designed for failure

16Peter Pietzuch – Imperial College London

Servers have many parallel CPU cores

Servers with GPUs common
– GPU have even more specialised cores

L3

C1

C2

C3

C4

C5

C6

C7

C8

L3

C1

C2

C3

C4

C5

C6

C7

C8

L2 Cache

DRAM DRAM

SMX1 ... SMXN

So
ck

et
 1

So
ck

et
 2

Command Queue
PCIe Bus

DMA

1000s of
GPU cores

10s of
CPU cores

But Must Also Exploit Parallel Hardware

17Peter Pietzuch – Imperial College London

Task Parallelism Vs Data Parallelism

18

select highway, segment, direction, AVG(speed)
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

Task parallelism:
Multiple queries

Data parallelism:
Single query

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select highway, segment, direction, AVG(speed)
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

highway 1-10 highway 1-5

Peter Pietzuch – Imperial College London

Event stream
partitioning

Operators/Tasks

executed in
parallel

Apache Storm: Dataflow Graphs

19

• Idea:
Execute event operators as data-
parallel tasks

• Task organised as dataflow graph

• Many systems do this, e.g. Apache
Storm, Apache Flink, Google
Dataflow, …

•

Peter Pietzuch – Imperial College London

parallelism
degree 3

parallelism
degree 2

E But must manually assign tasks to nodes…

Use Apache Hadoop For Event Processing?

20

• MapReduce model
– Data model: (key, value) pairs
– Two processing functions:

map(k1,v1) à list(k2,v2)
reduce(k2, list(v2)) à list (v3)

•

• Benefits
– Simple programming model
– Transparent parallelisation
– Fault-tolerant processingMap

Reduce

Shuffle

Partitioned data
on distributed

file system

M M M

R R R

Peter Pietzuch – Imperial College London

E Shuffle phase introduces synchronisation barrier (batch processing)

Apache Spark: Micro-Batching

21

UC Berkeley,
SOSP’13

• Idea:
Reduce size of data partitons to
produce up-to-date, incremental results

• Micro-batching for event data
– Tasks operate on micro-batch partitions
– Results produced with low latency

Event stream, divided into micro-batches

Peter Pietzuch – Imperial College London

E Interaction of query windows and micro-batches?

Spark: Small Slides Result In Low Throughout

22

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1 2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut

(1
06

tu
ple

s/
s)

Window slide (106 events)

E Want to avoid coupling performance with query definition

Peter Pietzuch – Imperial College London

select AVG(S.1) from S [rows 1024 slide x]

23

select highway, segment, direction, AVG(speed) as avg
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

1234567

w1
w2

w3
w4

Worker B

Worker A
Synchronise to output
results in order

Task

Task

How To Parallelise Sliding Windows?

E Leads to redundant computation

Peter Pietzuch – Imperial College London

Avoiding Redundant Computation

• Use panes to remove window overlap between tasks
– Smallest unit of parallelism without data dependencies between windows

• Apache Spark uses panes for micro-batches with windowed queries

12345

p1

p2

p3

p4

p5

Panes processed in parallel

Window results assembled
from pane results

24Peter Pietzuch – Imperial College London

E Window slide limited
by minimum micro-
batch size (~500 ms)

E Micro-batch size
limited by pane size

SABER: Window Fragment Model

Idea: Decouple task size from window size/slide
– e.g. 5 events/task, window size 7 rows, slide 2 rows

25

10 9 8 7 6 5 4 3 2 115 14 13 12 11

w1w2w3w4w5

T1T2T3

w1w2w3w4w5

Task contains one or more window fragments
– Closing/pending/opening windows in T2

– Workers process fragments incrementally

Imperial,
SIGMOD’16

Peter Pietzuch – Imperial College London

Merging Window Fragment Results

Idea: Decouple task size from window size/slide
– Assemble window fragment results
– Output them in correct order

26

Worker B: T2

w1
w2
w3

w4
w5

Worker A: T1
w1

w2
w3

w1
result

w2
result

Result Stage
Slot 2 Slot 1

EmptyEmpty

Output result
circular buffer

Worker B stores T2 results and exits (nothing to forward)Worker A stores T1 results, merges window fragment results and
forwards complete windows downstream

Peter Pietzuch – Imperial College London

SABER: Window Performance

0

0.05

0.1

0.15

0.2

0

2

4

6

8

64 256 1024 4096 16384

La
te

nc
y

(se
c)

Th
ro

ug
hp

ut
 (G

B/
s)

Window slide (events)

select AVG(S.1) from S [rows 1024 slide x]

27Peter Pietzuch – Imperial College London

SABER throughout

SABER latency

E Performance with windowed queries remains predictable

2 8 32 128 512

Challenge 2: Complex Algorithms
How to support online machine learning algorithms
over events?

Challenge 1: Performance
How to exploit parallelism on modern hardware independently
of processing semantics?

Roadmap

• Introduction to Event-Based Systems

28

• Conclusions

Peter Pietzuch – Imperial College London

Executed as dataflow graph

Supporting Online Machine Learning

Rating: 3
User A
Item:

“iPhone”
Rating: 5

User A
Recommend:

“Apple
Watch”

Customer events
on website

Up-to-date
recommendation
events

• Online recommender system
– Recommendations based on past user ratings
– Eg based on collaborative filtering (cf Netflix, Amazon, …)

(eg Storm, Spark, Flink, …)

29Peter Pietzuch – Imperial College London

E What programming abstraction to use to specify the algorithm?

Programming Models For Event Processing?

• Declarative query languages (e.g. CQL) challenging for complex
algorithms (eg machine learning, data mining)

– Consider iterative algorithms over event data
– Typically need to use user-defined functions (UDFs)

• Domain experts tend to write imperative programs
– Java, Matlab, C++, R, Python, Fortran, …

• But distributed dataflow frameworks favour functional models
– MapReduce, SQL, PIG, DryadLINQ, Spark, …
– Simplifies consistency and fault tolerance

30Peter Pietzuch – Imperial College London

Online Collaborative Filtering In Java

31

Matrix userItem = new Matrix();
Matrix coOcc = new Matrix();

void processRatingEvent(int user, int item,
int rating) {

userItem.setElement(user, item, rating);
updateCoOccurrence(coOcc, userItem);

}
Vector processRecEvent(int user) {

Vector userRow = userItem.getRow(user);
Vector userRec = coOcc.multiply(userRow);
return userRec;

}

Item-A Item-B
User-A 4 5
User-B 0 5

Item-A Item-B
Item-A 1 1
Item-B 1 2

User-Item matrix (UI)

Co-Occurrence matrix (CO)

Update with
new ratings

Multiply for
recommendation

User-B 1 2 x

Peter Pietzuch – Imperial College London

Collaborative Filtering In Spark (Java)

32

// Build the recommendation model using ALS
int rank = 10;
int numIterations = 20;
MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), rank, numIterations, 0.01);

// Evaluate the model on rating data
JavaRDD<Tuple2<Object, Object>> userProducts = ratings.map(
new Function<Rating, Tuple2<Object, Object>>() {

public Tuple2<Object, Object> call(Rating r) {
return new Tuple2<Object, Object>(r.user(), r.product());

}
}

);
JavaPairRDD<Tuple2<Integer, Integer>, Double> predictions = JavaPairRDD.fromJavaRDD(
model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map(

new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){

return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());

}
}

));
JavaRDD<Tuple2<Double, Double>> ratesAndPreds = JavaPairRDD.fromJavaRDD(ratings.map(

new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){

return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());

}
}

)).join(predictions).values();

Peter Pietzuch – Imperial College London

Collaborative Filtering In Spark (Scala)

33

// Build the recommendation model using ALS
val rank = 10
val numIterations = 20
val model = ALS.train(ratings, rank, numIterations, 0.01)

// Evaluate the model on rating data
val usersProducts = ratings.map {
case Rating(user, product, rate) => (user, product)

}
val predictions =
model.predict(usersProducts).map {
case Rating(user, product, rate) => ((user, product), rate)

}
val ratesAndPreds = ratings.map {
case Rating(user, product, rate) => ((user, product), rate)

}.join(predictions)

E All event data is immutable, no fine-grained model updates
Peter Pietzuch – Imperial College London

Processing State As First Class Citizen

34

User A
Item 2

User B

Item 1
2
4 1

5

Tasks process
event data

State Elements
(SEs) represent
transient state

Dataflows
represent

event
streams

• State elements (SEs) are mutable in-memory data structures
– Tasks have local access to SEs
– SEs can be shared between tasks

Imperial,
SIGMOD’13

Peter Pietzuch – Imperial College London

Challenges With Large Processing State

• State will not fit into single node

35

Big Data
problem:
Matrices

become large
Matrix userItem = new Matrix();
Matrix coOcc = new Matrix();

Peter Pietzuch – Imperial College London

E How to handle distributed state in a scalable fashion?

Partitioned State Elements

• Idea: Partitioned SEs are split into disjoint partitions

36

Dataflow routed according to
hash function

Item-A Item-B

User-A 4 5

User-B 0 5

Access
by key

State partitioned according
to partitioning key

User-Item matrix (UI)

hash(userID)

Key space: [0-N]

[0-k]

[(k+1)-N]

Peter Pietzuch – Imperial College London

Partial State Elements

• Partial SEs are replicated (when partitioning is not possible)

– Replicas kept weakly consistent

• Access to partial SEs either local or global

37

Local access:
Events sent to one

Global access:
Events sent to all

Peter Pietzuch – Imperial College London

Item-A Item-B
Item-A 1 1
Item-B 1 2

Co-Occurrence matrix (CO)

38

Program.java Cluster

Annotated
Java program
(@Partitioned, @Partial, @Global, …)

Static
program
analysis

SEEP distributed
dataflow framework

Translation &
checkpoint-
based fault

tolerance

Data-parallel
Stateful Dataflow

Graph (SDG)

Scalable & Elastic Event Processing (SEEP)Imperial,
USENIX
ATC’14

Peter Pietzuch – Imperial College London

SEEP: Online Logistic Regression

39

 0

 10

 20

 30

 40

 50

 60

25 50 75 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of nodes

SDG
Spark

100 GB training dataset for classification
Deployed on Amazon EC2 (“m1.xlarge” VMs with 4 vCPUs and 16 GB RAM)

SEEP

Spark

E SEEP has comparable throughput to Spark despite mutable state
Peter Pietzuch – Imperial College London

Conclusions I

• Event-based systems are a crucial part of many data processing stacks
– Many applications and services require real-time view of event streams
– Batch processing models increasingly replaced by event processing

• Interesting tension between performance and algorithmic complexity

40Peter Pietzuch – Imperial College London

Easy

Hard for
complex
algorithms

Hard for
all algo-
rithms

Result latency

Ev
en

t r
at

e

KB/s

MB/s

GB/s

mins 10s 1s 100ms 10ms

Conclusions II

• 1. Modern parallel hardware (multicore CPUs/GPUs) raises challenges
– New event-based system designs must exploit data parallelism
– But must not couple performance with processing semantics

• E Principled window handling in parallel event processing

• 2. Online machine learning over events is killer app
– Complex streaming applications require expressive programming models
– Want to offer natural programming abstractions to users

• E Stateful event processing for machine learning

41Peter Pietzuch – Imperial College London

Acknowledgements – LSDS Group

42

Peter Pietzuch
<prp@doc.ic.ac.uk>

http://lsds.doc.ic.ac.uk
Thank you! Any Questions?

Peter Pietzuch – Imperial College London

