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Events Are Everywhere

More data created than ever
— Generated 2.5 Exabytes (billion GBs) each day in 2015

Many new become available e
' \ T GETALL THE
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Internet services, Social feeds loT USe FOR (T LATER.
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Storage and networking costs become cheaper
— Hard drive cost per GB dropped from $8.93 (2000) to $0.03 (2014)

*- Many applications want to exploit these events in real-time...
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Intelligent Urban Transport
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Real-Time Web Analytics

Potential queries @g) Uniquely Identified Visitors
— How to uniquely identify web site visitors? Q,g Unique Visitors
— How to maximize user experience with & Visits
relevant content? f" / \\ Page Views
— How to analyse “click paths” to trace most Y/ \ His
common user routes? Volume of Available Data
Example: Online predictions for Solution: AdPredictor
adverts to serve on search engines — Bayesian learning algorithm
ranks ads according to click
OING' | Chezp fights P probabilities
g::;%’;etaop%%?ﬁcl?l.iug:ts Now- Try Cheapflights today. fn

update

Cheap Flights from £20
Skyscanner.net/CheapFlights
Find Cheap Flights & Book Today. Prices from only £20

Cheap Flights from £29
eDreams.co.uk/Cheap_Flight
Offer Ends on the 30th: Hurry, Book Now & Save Today!

Cheap Flight Upto 65% OFF
www.CheapOair.co.uk/Cheap-Flightss
Fares Just Dropped! Upto 65% Off + Eamn Extra £15 Discount Today.
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Social Data Mining

-
TWItter Cascad gl stephanienour Stephanie NourPrince
OMG, FYI, and LOL enter Oxford English Dictionary, foreshadow the
u \
Detection

apocalypse engt.co/i5fsoO
1 minute ago

RSS

/RSS

Peter Pietzuch — Imperial College London 5



Applications Follow An Event-Based Model

= Loose coupling
e (results in
Db ‘ scalable design) I
v .
= o
- e Subscriptions, %
\ Queries
Users
X, Event streams
W
Y o° . Results :
i Event-based AT
~ System
)
Event Event
producers consumers
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Challenge 1: Performance Matters!

Event Based
System

&

High-throughput streams Low-latency results

Facebook Insights:  Aggregates 9 GB/s

Feedzai: 40K credit card transactions/s
Google Zeitgeist: 40K user queries/s (1 sec windows)
NovaSparks: 150M trade options/s
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Challenge 2: Complex Algorithms Matter!

T1 T1(a, b, ) . | S-E-EI !?.re:;osczss
T2 T2(c, d, €) = |Pr:2 s |I:i w Trrfc’ =) °§§°:°'y‘ “%.;"g'f"":t 5251 d‘f&fﬁ dimg"::ﬂ"y‘ @Hm Parallelize
Aggregate
T3 T3(g, i, h)
iC- - mplex , ,
Topic Content Comple Stream Online machine
based based pattern ueries learning, data
filtering filtering matching . e
mining

Complex Event Stream

Publish/Subscrib
HPISISUBSCHDE Processing (CEP) processing
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Roadmap

Introduction to Event-Based Systems

Challenge 1: Performance

How to exploit parallelism on modern hardware independently
of processing semantics?

Challenge 2: Complex Algorithms
How to support online machine learning algorithms
over events?

Conclusions
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What Is An Event?

An event is a happening of interests. An event type is a
specification of a set of events of the same structure and

semantics.
[Etzion and Niblett (2011)]

can have fixed relational schema highway = M25
— Payload of event is a set of attributes segment = 42
direction = north
speed = 85

Vehicle speed data

Vehicles(highway, segment, direction, speed)
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What Is An Event Stream?

is an infinite sequence of events
— Assume associated timestamp (eg time of reading, time of arrival, ...)

t, ) t t,

highway highway highway highway highway highway highway highway highway highway
segment segment segment segment segment segment segment segment segment segment
direction direction direction direction direction direction direction direction direction direction
speed speed speed speed speed speed speed speed speed speed

Event stream time

*- But we have an infinite amount of data to process...
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How Many Events To Process?

defined finite set of events for processing
— Process events in window-sized batches

highway highway highway highway highway highway highway highway highway highway
segment | segment | segment | segment | segment | segment segment | segment | segment | segment
direction direction direction direction direction direction direction direction direction direction
speed speed speed speed speed speed speed speed speed speed

window

]

now

Time-based window with size T at current time t
[t-T:1] Vehicles[Range T seconds]

Count-based window with size n:
last n events Vehicles[Rows n]

Peter Pietzuch — Imperial College London



How To Define Event Queries?

Window converts event stream to dynamic relation (database table)
— Similar to maintaining database view

— Use reqgular relational algebra operators on tuples

Window specification

Any relational

_ query
Streams Relations

(select, project,
join, group by, etc)

Special operators:
Istream, Dstream, Rstream
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s CQL: SQL-Based Declarative Queries

provides well-defined semantics for event/stream queries
— Based on well-defined relational algebra (select, project, join, ...)

Example: Identify slow moving traffic on highway
— Find highway segments with average speed below 40 km/h

Output
/select highway, segment, )
direction, AVG(speed) as avg
Input stream from Vehicles[range 5 sec slide 1 sec]
group by highway, segment, direction
Khavmg avg < 40 )
Operators

< Principled way to define event processing semantics...

Peter Pietzuch — Imperial College London 14



Roadmap

Challenge 1: Performance

How to exploit parallelism on modern hardware independently
of processing semantics?

Challenge 2: Complex Algorithms
How to support online machine learning algorithms
over events?

Conclusions
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How To Scale Big Data Systems?

Commodity servers
Fast network fabric
Software designed for failure

i3
21

e
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But Must Also Exploit Parallel Hardware

Servers have many parallel CPU cores

Servers with GPUs common
— GPU have even more specialised cores

PCle Bus
Command Queue
SMX; ... SMXy _l
- I\ T mm T 1R
0sof | E|le &l glie @ =
S0 Slle @l | 8|l o == I o 1000s of
CPU cores C; G C:; C; EE EE EE > GPU cores
\ C, GCg Cs Gy == == ==
[ 1 | HE HE
=l = g
DRAM pvA DRAM
L
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Task Parallelism Vs Data Parallelism

ictinet \Al ~id |

ickineat \Al ~idd | . g g
e e ANl in | select highway, segment, direction, AVG(speed)

f Vehicl 5 ds slide 1 d
select highway, segment, direction, AVG(speed) rom venic es[range Seconas Side 1 Secon ]
. ) group by highway, segment, direction
from Vehicles[range 5 seconds slide 1 second] having avg < 40
group by highway, segment, direction
having avg <40

Multiple queries Single query
highway 1-10 highway 1-5
Yy executedin
Event stream 9/7%,1/ parallel
partitioning %70

Operators/Tasks
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Apache Storm: Dataflow Graphs

|dea:
Execute event operators as data-
parallel

Task organised as

parallelism
degree 2 Many systems do this, e.g. Apache
Storm, Apache Flink, Google
Dataflow, ...
parallelism
degree 3

*- But must manually assign tasks to nodes...
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Use Apache Hadoop For Event Processing?

3
ror 9 MapReduce model
— Data model: (key, value) pairs

Reduce

? ? ? — Two processing functions:

— map(k,v) > list(kov2)

— reduce(ks, list(v)) > list (va)
Shuffle M

Benefits
— Simple programming model
— Transparent parallelisation

Map — Fault-tolerant processing

Partitioned data
on distributed

< Shuffle phase introduces synchronisation barrier (batch processing)

-@-| [l
-©-10
-0~ [
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sosr1a . Apache Spark: Micro-Batching

. |dea:
t 11 Reduce size of data partitons to

Q Q O produce up-to-date, incremental results
rr 1

—

for event data
— Tasks operate on micro-batch partitions
— Results produced with low latency

b1
OO
Trr

Event stream, divided into micro-batches

O-1]

@ |nteraction of query windows and micro-batches?
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Spark: Small Slides Result In Low Throughout

select AVG(S.1) from S [rows 1024 slide x|

o -
1.8 -
32,
c O -
g) 5 1.2 :
s !
= = 0.8 A
0.6 1
0.4 -
0.2 -
0 T T T T T T T T |
0 1 2 3 4 5 6 7 8 9
Window slide ( )

*- \Want to avoid coupling performance with query definition
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How To Parallelise Sliding Windows?

select highway, segment, direction, AVG(speed) as avg
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40
o /
7. 6 5 4 3 2 A1
Task( W1}—>[ Worker A
! Wo /| Synchronise to output
W ) results in order
Task 3 »[ Worker B
{ Wy ) J

* | eads to redundant computation
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Avoiding Redundant Computation

Use to remove window overlap between tasks
— Smallest unit of parallelism without data dependencies between windows
5 4 3 2 1

| I 1 ] I 1
H EEE NN EEN EEE
II= ] |

-
P4
P2 Panes processed in parallel
Ps3 e
P4 Window results assembled
Ds from pane results

Apache Spark uses panes for micro-batches with windowed queries

< Window slide limited
by minimum micro-
batch size (~500 ms)

< Micro-batch size
limited by pane size
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sevoris SABER: Window Fragment Model

|dea: Decouple task size from window size/slide
— e.g. 5 events/task, window size 7 rows, slide 2 rows

T, T, T,
1511411312 | 11 1019 |8 |7 | 6 514|312 |1
\ W,
Wy
W3
Wy
Wsg

Task contains one or more
— Closing/pending/opening windows in T,
— Workers process fragments incrementally
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Merging Window Fragment Results

|dea: Decouple task size from window size/slide
— Assemble window fragment results
— Output themin correct order

Worker A: T,
W
[ W2 1} l W2
result
W ]
m mpt Wi
4 'i py result
Wi —
Wp
. w. " Slot 2 Slot 1 Output It
4 utput resu
_— s Result Stage circular buffer
Worker B: T,

WorkearBssimed | Iresedia)ts engdsenitsi tnofragopeotiemsubsand
forwards complete windows downstream

26
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SABER: Window Performance

select AVG(S.1) from S [rows 1024 slide x]

8 - B 02

) SABER throughout
— & A x 015
m \ 9
c |y 2
a 4f “ - 01 &
5 \ 2
) ®
9 \‘ —1
|£ 2 A “ B 005

e SABER latency
0 . B R
2 8 32 128 512
Window slide ( )

*- Performance with windowed queries remains predictable
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Roadmap

Challenge 2: Complex Algorithms
How to support online machine learning algorithms

over events?

Conclusions

Peter Pietzuch — Imperial College London

28



Supporting Online Machine Learning

Online recommender system
— Recommendations based on past user ratings

— Eg based on (cf Netflix, Amazon, ...)
User A
User A Recommend:
ltem: “Apple
“iPhone” Watch”
Rating: 5
Customer events Up-to-date |
on website recommendation
events

Executed as dataflow graph
(eg Storm, Spark, Flink, ...)

<@ \What programming abstraction to use to specify the algorithm?
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Programming Models For Event Processing?

™ ] Lt ] / = AN\ c_ . N

TIOBE Programming Community Index

Source; www.tiobe.com

30
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Online Collaborative Filtering In Java

Update with
new ratings
Item-A | Item-B
User-A 4 5
User-B 0 5

User-ltem matrix (Ul)

Multiply for
recommendation

@x userltem = new Matrix();

Matrix coOcc = new Matrix();

return userRec;

Item-A

Item-B

User-B|1]|2|X Item-A

1

1

Item-B

1

2

Co-Occurrence matrix (CO)

Peter Pietzuch — Imperial College London

userltem.setElement(user, item, rating);
updateCoOccurrence(coOcc, userltem);

Vector userRow = userltem.getRow(user);
Vector userRec = coOcc.multiply(userRow);

~
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Collaborative Filtering In Spark (Java)

// Build the recommendation model using ALS

int rank=10;
int numlterations = 20;
MatrixFactorizationModel model = (JavaRDD.toRDD(ratings), rank, numlterations, 0.01);

// Evaluate the model onrating data
JavaRDD<Tuple2<Object, Object>> = (
new Function<Rating, Tuple2<Object, Object>>() {
public Tuple2<Object, Object> call(Ratingr) {
return new Tuple2<Object, Object>(r.user(), r.product());

}
) }
JavaPairRDD<Tuple2<Integer, Integer>, Double> = JavaPairRDD.fromJavaRDD(

(JavaRDD.toRDD(userProducts)).toJavaRDD().map(
new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());

}
}

);
JavaRDD<Tuple2<Double, Double>> = JavaPairRDD.fromJavaRDD( (
new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());

}
}

). values);
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Collaborative Filtering In Spark (Scala)

// Build the recommendation model using ALS
val rank =10

val numlterations = 20
val model = (ratings, rank, numlterations, 0.01)

// Evaluate the model on rating data
val usersProducts = ratings. {

case Rating(user, product, rate) => (user, product)

}

val predictions =

model.predict(usersProducts). {
case Rating(user, product, rate) => ((user, product), rate)
}
val ratesAndPreds = ratings. {

case Rating(user, product, rate) => ((user, product), rate)
\}. (predictions) /

* All event data is immutable, no fine-grained model updates
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Imperial,

sevons Processing State As First Class Citizen

Tasks process

event data v/\
Item 1 Item 2 3
UserA 2 5 Dataflows
UserB 4 1 represent
event

streams

State Elements -

(SEs) represent . . ’( )

transient state

are mutable in-memory data structures
— Tasks have local access to SEs
— SEs can be shared between tasks

Peter Pietzuch — Imperial College London
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Challenges With Large Processing State

- ~N Big Data
problem:
Matrices

become large

Matrix userltem = new Matrix();
Matrix coOcc = new Matrix();

. J

State will not fit into single node

e How to handle distributed state in a scalable fashion?
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Partitioned State Elements

|dea: Partitioned SEs are split into disjoint partitions

A
Key space: [0-N] ‘ |:>
A\ ACOR
User-ltem matrix (Ul)

Item-A | Item-B
Access L

User-A 4 5 hash(userID) Q/v
by key

User-B 0 5

State partitioned according Dataflow routed according to
to partitioning key hash function
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Partial State Elements

Partial SEs are replicated (when partitioning is not possible)

Co-Occurrence matrix (CO) ‘
Item-A | Item-B

Item-A 1 1 |:>

Item-B 1 2

— Replicas kept weakly consistent

Access to partial SEs either local or global

Local access: Global access:
Events sent to one Events sent to all

Peter Pietzuch — Imperial College London 37



Imperial,

usenx Scalable & Elastic Event Processing (SEEP)

ATC’14

Annotated
Java program

(@Partitioned, @Partial, @Global, ...)

~O—~0-0~

>

Program.java
[ )

Peter Pietzuch — Imperial College London

Static
program
analysis

Data-parallel

SEEP distributed
dataflow framework

Translation & §
checkpoint-
based fault
tolerance
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SEEP: Online Logistic Regression

100 GB training dataset for classification
Deployed on Amazon EC2 (“m1.xlarge” VMs with 4 vCPUs and 16 GB RAM)

60 | l l l
% 50 F
=3 SEEP
G 40
a 30|
L
2 oo b
2 Spark
= 10
0 ] ] ] ]

25 50 75 100
Number of nodes

o SEEP has comparable throughput to Spark despite mutable state
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Conclusions |

Event-based systems are a crucial part of many data processing stacks
— Many applications and services require real-time view of event streams
— Batch processing models increasingly replaced by event processing

Interesting tension between and

GB/s
Hard fo

o all algo-
wpd o
© MB/s rithms
-E Hard for
o complex
> ]
L algorithms

KB/s

Easy
mins  10s 1s 100ms 10ms
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Conclusions Il

1. Modern (multicore CPUs/GPUs) raises challenges
— New event-based system designs must exploit data parallelism
— But must not couple performance with processing semantics

<@ Principled window handling in parallel event processing

2. over events is killer app
— Complex streaming applications require expressive programming models
— Want to offer natural programming abstractions to users

<o Stateful event processing for machine learning
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