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Events Are Everywhere

• More data created than ever
– Generated 2.5 Exabytes (billion GBs) each day in 2015

• Many new sources of event data become available

• Storage and networking costs become cheaper
– Hard drive cost per GB dropped from $8.93 (2000) to $0.03 (2014)
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E Many applications want to exploit these events in real-time…



Intelligent Urban Transport
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• Instrumentation of urban 
transport

– Induction loops to measure 
traffic flow

– Video surveillance of hot spots
– Sensors in public transport

• Potential queries
– How to detect traffic 

congestion and road 
closures?

– How to explain the cause of 
congestion (public event, 
emergency)?

– How to react accordingly (eg
by adapting traffic light 
schedules)?
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Real-Time Web Analytics

• Potential queries
– How to uniquely identify web site visitors?
– How to maximize user experience with

relevant content?
– How to analyse “click paths” to trace most

common user routes?

• Example: Online predictions for 
adverts to serve on search engines
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• Solution: AdPredictor
– Bayesian learning algorithm

ranks ads according to click 
probabilities



Social Data Mining
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Twitter Cascade 
Detection
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Applications Follow An Event-Based Model
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Challenge 1: Performance Matters!

…

High-throughput streams

Facebook Insights: Aggregates 9 GB/s < 10 sec latency
Feedzai: 40K credit card transactions/s < 25 ms latency
Google Zeitgeist: 40K user queries/s (1 sec windows) < 1 ms latency
NovaSparks: 150M trade options/s < 1 ms latency

Low-latency results
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Event-Based
System



Challenge 2: Complex Algorithms Matter!
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Challenge 2: Complex Algorithms
How to support online machine learning algorithms
over events?

Challenge 1: Performance
How to exploit parallelism on modern hardware independently 
of processing semantics?

Roadmap

• Introduction to Event-Based Systems
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• Conclusions
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What Is An Event?
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An event is a happening of interests. An event type is a 
specification of a set of events of the same structure and 
semantics.
[Etzion and Niblett (2011)]

• Events can have fixed relational schema
– Payload of event is a set of attributes

highway = M25
segment = 42
direction = north
speed = 85

Vehicle speed data

Vehicles(highway, segment, direction, speed)
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What Is An Event Stream?

• Event stream is an infinite sequence of events
– Assume associated timestamp (eg time of reading, time of arrival, …)
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E But we have an infinite amount of data to process…



window

How Many Events To Process?

• Windows defined finite set of events for processing
– Process events in window-sized batches
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Time-based window with size τ at current time t
[t - τ : t] Vehicles[Range τ seconds]

Count-based window with size n:
last n events Vehicles[Rows n]



• Window converts event stream to dynamic relation (database table)
– Similar to maintaining database view
– Use regular relational algebra operators on tuples

How To Define Event Queries?

Streams Relations

Window specification

Special operators: 
Istream, Dstream, Rstream

Any relational 
query

(select, project,
join, group by, etc)
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CQL: SQL-Based Declarative Queries

CQL provides well-defined semantics for event/stream queries
– Based on well-defined relational algebra (select, project, join, …)

• Example: Identify slow moving traffic on highway
– Find highway segments with average speed below 40 km/h
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select highway, segment, 
direction, AVG(speed) as avg

from Vehicles[range 5 sec slide 1 sec]
group by highway, segment, direction
having avg < 40

Peter Pietzuch – Imperial College London

Input stream

Output

Operators

E Principled way to define event processing semantics…

Stanford,
2003



Challenge 2: Complex Algorithms
How to support online machine learning algorithms
over events?

Challenge 1: Performance
How to exploit parallelism on modern hardware independently 
of processing semantics?

Roadmap

• Introduction to Event-Based Systems
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• Conclusions
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How To Scale Big Data Systems?

• Use scale out
– Commodity servers
– Fast network fabric

• Software designed for failure

16Peter Pietzuch – Imperial College London



Servers have many parallel CPU cores

Servers with GPUs common
– GPU have even more specialised cores
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Task Parallelism Vs Data Parallelism
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select highway, segment, direction, AVG(speed) 
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

Task parallelism:
Multiple queries

Data parallelism:
Single query

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select distinct W.cid
From Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

select highway, segment, direction, AVG(speed) 
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

highway 1-10 highway 1-5

Peter Pietzuch – Imperial College London

Event stream
partitioning

Operators/Tasks

executed in 
parallel



Apache Storm: Dataflow Graphs
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• Idea:
Execute event operators as data-
parallel tasks

• Task organised as dataflow graph

• Many systems do this, e.g. Apache 
Storm, Apache Flink, Google 
Dataflow, …

•

Peter Pietzuch – Imperial College London

parallelism
degree 3

parallelism
degree 2

E But must manually assign tasks to nodes…



Use Apache Hadoop For Event Processing?
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• MapReduce model
– Data model: (key, value) pairs
– Two processing functions:

map(k1,v1) à list(k2,v2)
reduce(k2, list(v2)) à list (v3)

•

• Benefits
– Simple programming model
– Transparent parallelisation
– Fault-tolerant processingMap

Reduce

Shuffle

Partitioned data 
on distributed 

file system

M M M

R R R
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E Shuffle phase introduces synchronisation barrier (batch processing)



Apache Spark: Micro-Batching
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UC Berkeley,
SOSP’13

• Idea:
Reduce size of data partitons to 
produce up-to-date, incremental results

• Micro-batching for event data
– Tasks operate on micro-batch partitions
– Results produced with low latency

Event stream, divided into micro-batches
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E Interaction of query windows and micro-batches?



Spark: Small Slides Result In Low Throughout
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E Want to avoid coupling performance with query definition
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select AVG(S.1) from S [rows 1024 slide x]
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select highway, segment, direction, AVG(speed) as avg
from Vehicles[range 5 seconds slide 1 second]
group by highway, segment, direction
having avg < 40

1234567
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Worker B

Worker A
Synchronise to output 
results in order

Task

Task

How To Parallelise Sliding Windows?

E Leads to redundant computation
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Avoiding Redundant Computation

• Use panes to remove window overlap between tasks
– Smallest unit of parallelism without data dependencies between windows

• Apache Spark uses panes for micro-batches with windowed queries

12345

p1

p2

p3

p4

p5

Panes processed in parallel

Window results assembled 
from pane results 
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E Window slide limited 
by minimum micro-
batch size (~500 ms)

E Micro-batch size
limited by pane size



SABER: Window Fragment Model

Idea: Decouple task size from window size/slide
– e.g. 5 events/task, window size 7 rows, slide 2 rows
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Task contains one or more window fragments
– Closing/pending/opening windows in T2

– Workers process fragments incrementally 

Imperial,
SIGMOD’16
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Merging Window Fragment Results

Idea: Decouple task size from window size/slide
– Assemble window fragment results
– Output them in correct order
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SABER: Window Performance
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SABER throughout

SABER latency

E Performance with windowed queries remains predictable

2 8 32 128 512



Challenge 2: Complex Algorithms
How to support online machine learning algorithms
over events?

Challenge 1: Performance
How to exploit parallelism on modern hardware independently
of processing semantics?

Roadmap

• Introduction to Event-Based Systems

28

• Conclusions
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Executed as dataflow graph

Supporting Online Machine Learning

Rating: 3
User A
Item: 

“iPhone”
Rating: 5

User A
Recommend: 

“Apple 
Watch”

Customer events
on website

Up-to-date 
recommendation
events

• Online recommender system
– Recommendations based on past user ratings
– Eg based on collaborative filtering (cf Netflix, Amazon, …)

(eg Storm, Spark, Flink, …)
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E What programming abstraction to use to specify the algorithm?



Programming Models For Event Processing?

• Declarative query languages (e.g. CQL) challenging for complex 
algorithms (eg machine learning, data mining)

– Consider iterative algorithms over event data
– Typically need to use user-defined functions (UDFs)

• Domain experts tend to write imperative programs
– Java, Matlab, C++, R, Python, Fortran, …

• But distributed dataflow frameworks favour functional models
– MapReduce, SQL, PIG, DryadLINQ, Spark, …
– Simplifies consistency and fault tolerance
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Online Collaborative Filtering In Java
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Matrix userItem = new Matrix();
Matrix coOcc = new Matrix();

void processRatingEvent(int user, int item, 
int rating) { 

userItem.setElement(user, item, rating);
updateCoOccurrence(coOcc, userItem);

}
Vector processRecEvent(int user) {

Vector userRow = userItem.getRow(user);
Vector userRec = coOcc.multiply(userRow); 
return userRec;

}

Item-A Item-B
User-A 4 5
User-B 0 5

Item-A Item-B
Item-A 1 1
Item-B 1 2

User-Item matrix (UI)

Co-Occurrence matrix (CO)

Update with 
new ratings

Multiply for 
recommendation

User-B 1 2 x
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Collaborative Filtering In Spark (Java)
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// Build the recommendation model using ALS
int rank = 10;
int numIterations = 20;
MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), rank, numIterations, 0.01); 

// Evaluate the model on rating data
JavaRDD<Tuple2<Object, Object>> userProducts = ratings.map(
new Function<Rating, Tuple2<Object, Object>>() {

public Tuple2<Object, Object> call(Rating r) {
return new Tuple2<Object, Object>(r.user(), r.product());

}
}

);
JavaPairRDD<Tuple2<Integer, Integer>, Double> predictions = JavaPairRDD.fromJavaRDD(
model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map(

new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){

return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());

}
}

));
JavaRDD<Tuple2<Double, Double>> ratesAndPreds = JavaPairRDD.fromJavaRDD(ratings.map(

new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){

return new Tuple2<Tuple2<Integer, Integer>, Double>(
new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());

}
}

)).join(predictions).values();
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Collaborative Filtering In Spark (Scala)
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// Build the recommendation model using ALS
val rank = 10
val numIterations = 20
val model = ALS.train(ratings, rank, numIterations, 0.01)

// Evaluate the model on rating data
val usersProducts = ratings.map {
case Rating(user, product, rate) => (user, product)

}
val predictions = 
model.predict(usersProducts).map {
case Rating(user, product, rate) => ((user, product), rate)

}
val ratesAndPreds = ratings.map {
case Rating(user, product, rate) => ((user, product), rate)

}.join(predictions)

E All event data is immutable, no fine-grained model updates
Peter Pietzuch – Imperial College London



Processing State As First Class Citizen
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event data

State Elements 
(SEs) represent 
transient state

Dataflows 
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event 
streams

• State elements (SEs) are mutable in-memory data structures
– Tasks have local access to SEs
– SEs can be shared between tasks

Imperial,
SIGMOD’13
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Challenges With Large Processing State

• State will not fit into single node
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Big Data 
problem:
Matrices

become large
Matrix userItem = new Matrix();
Matrix coOcc = new Matrix();
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E How to handle distributed state in a scalable fashion?



Partitioned State Elements

• Idea: Partitioned SEs are split into disjoint partitions
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Dataflow routed according to 
hash function

Item-A Item-B

User-A 4 5

User-B 0 5

Access
by key

State partitioned according
to partitioning key

User-Item matrix (UI)

hash(userID)

Key space: [0-N]

[0-k]

[(k+1)-N]
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Partial State Elements

• Partial SEs are replicated (when partitioning is not possible)

– Replicas kept weakly consistent

• Access to partial SEs either local or global
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Local access:
Events sent to one

Global access:
Events sent to all
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Item-A Item-B
Item-A 1 1
Item-B 1 2

Co-Occurrence matrix (CO)
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Java program
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SEEP: Online Logistic Regression
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Conclusions I

• Event-based systems are a crucial part of many data processing stacks
– Many applications and services require real-time view of event streams
– Batch processing models increasingly replaced by event processing

• Interesting tension between performance and algorithmic complexity
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Conclusions II

• 1. Modern parallel hardware (multicore CPUs/GPUs) raises challenges
– New event-based system designs must exploit data parallelism
– But must not couple performance with processing semantics

• E Principled window handling in parallel event processing

• 2. Online machine learning over events is killer app
– Complex streaming applications require expressive programming models
– Want to offer natural programming abstractions to users

• E Stateful event processing for machine learning
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