# Imperial College London



# How Event-Based Systems Took Over The World: Combining Performance with Complex Algorithms

**Peter Pietzuch** 

prp@imperial.ac.uk

Large-Scale Distributed Systems Group Department of Computing, Imperial College London http://lsds.doc.ic.ac.uk

DEBS 2016 - Irvine, CA, USA

## **Events Are Everywhere**

#### More data created than ever

- Generated 2.5 Exabytes (billion GBs) each day in 2015

#### Many new sources of event data become available



#### Storage and networking costs become cheaper

- Hard drive cost per GB dropped from \$8.93 (2000) to \$0.03 (2014)

Many applications want to exploit these events in real-time...

## **Intelligent Urban Transport**



# Instrumentation of urban transport

- Induction loops to measure traffic flow
- Video surveillance of hot spots
- Sensors in public transport

#### Potential queries

- How to detect traffic congestion and road closures?
- How to explain the cause of congestion (public event, emergency)?
- How to react accordingly (eg by adapting traffic light schedules)?

#### Peter Pietzuch - Imperial College London

## **Real-Time Web Analytics**

#### **Potential queries**

- How to uniquely identify web site visitors?
- How to maximize user experience with relevant content?
- How to analyse "click paths" to trace most common user routes?

# Example: Online predictions for adverts to serve on search engines





## Solution: AdPredictor

 Bayesian learning algorithm ranks ads according to click probabilities



#### Peter Pietzuch - Imperial College London

## **Social Data Mining**



## **Applications Follow An Event-Based Model**



## **Challenge 1: Performance Matters!**



#### **High-throughput streams**

**Low-latency results** 

Facebook Insights: Feedzai: Google Zeitgeist: NovaSparks: Aggregates 9 GB/s 40K credit card transactions/s 40K user queries/s (1 sec windows) 150M trade options/s

- < 10 sec latency
- < 25 ms latency
- < 1 ms latency
- < 1 ms latency

## **Challenge 2: Complex Algorithms Matter!**



## Roadmap

Introduction to Event-Based Systems

Challenge 1: Performance How to exploit parallelism on modern hardware independently of processing semantics?

Challenge 2: Complex Algorithms How to support online machine learning algorithms over events?

Conclusions

Peter Pietzuch – Imperial College London

## What Is An Event?

An **event** is a happening of interests. An **event type** is a specification of a set of events of the same structure and semantics. [Etzion and Niblett (2011)]

#### Events can have fixed relational schema

- Payload of event is a set of attributes

highway = M25 segment = 42 direction = north speed = 85

Vehicle speed data

#### Vehicles(highway, segment, direction, speed)

## What Is An Event Stream?

#### Event stream is an infinite sequence of events

- Assume associated timestamp (eg time of reading, time of arrival, ...)



But we have an infinite amount of data to process...

## **How Many Events To Process?**

### Windows defined finite set of events for processing

- Process events in window-sized batches



Time-based window with size τ at current time t[t - τ : t]Vehicles[Range τ seconds]

# Count-based window with size n:last n eventsVehicles[Rows n]

## **How To Define Event Queries?**

#### Window converts event stream to dynamic relation (database table)

- Similar to maintaining database view
- Use regular relational algebra operators on tuples



## Stanford, CQL: SQL-Based Declarative Queries

#### **CQL** provides well-defined semantics for event/stream queries

- Based on well-defined relational algebra (select, project, join, ...)

### Example: Identify slow moving traffic on highway

- Find highway segments with average speed below 40 km/h



## Roadmap

Introduction to Event-Based Systems

Challenge 1: Performance How to exploit parallelism on modern hardware independently of processing semantics?

Challenge 2: Complex Algorithms How to support online machine learning algorithms over events?

Conclusions

Peter Pietzuch – Imperial College London

## How To Scale Big Data Systems?

# Use scale out

- Commodity servers
- Fast network fabric

Software designed for failure

## **But Must Also Exploit Parallel Hardware**



## **Task Parallelism Vs Data Parallelism**



## **Task parallelism:** Multiple queries

select highway, segment, direction, AVG(speed)from Vehicles[range 5 seconds slide 1 second]group byhighway, segment, directionhavingavg < 40</th>

## **Data parallelism:** Single query



## **Apache Storm: Dataflow Graphs**



Idea: Execute event operators as dataparallel tasks

Task organised as dataflow graph

Many systems do this, e.g. Apache Storm, Apache Flink, Google Dataflow, ...

But must manually assign tasks to nodes...

## **Use Apache Hadoop For Event Processing?**



## MapReduce model

- Data model: (key, value) pairs
- Two processing functions:

 $map(k_1,v_1) \rightarrow list(k_2,v_2)$ reduce(k\_2, list(v\_2)) \rightarrow list (v\_3)

### **Benefits**

- Simple programming model
- Transparent parallelisation
- Fault-tolerant processing

Shuffle phase introduces synchronisation barrier (batch processing)

#### Peter Pietzuch – Imperial College London



## **Apache Spark: Micro-Batching**



Event stream, divided into micro-batches

Idea: **Reduce size of data partitons** to produce up-to-date, incremental results

### Micro-batching for event data

- Tasks operate on micro-batch partitions
- Results produced with low latency

Interaction of query windows and micro-batches?

#### Peter Pietzuch – Imperial College London

## **Spark: Small Slides Result In Low Throughout**

#### select AVG(S.1) from S [rows 1024 slide x]



Want to avoid coupling performance with query definition

## **How To Parallelise Sliding Windows?**

| select   | highway, segment, direction, AVG(speed) as avg |
|----------|------------------------------------------------|
| from     | Vehicles[range 5 seconds slide 1 second]       |
| group by | highway, segment, direction                    |
| having   | avg < 40                                       |
|          |                                                |



#### Leads to redundant computation

## **Avoiding Redundant Computation**

#### Use panes to remove window overlap between tasks

- Smallest unit of parallelism without data dependencies between windows



Apache Spark uses panes for micro-batches with windowed queries

 Micro-batch size limited by pane size  Window slide limited by minimum microbatch size (~500 ms)

## SIGMOD'16 SABER: Window Fragment Model

#### Idea: Decouple task size from window size/slide

- e.g. 5 events/task, window size 7 rows, slide 2 rows



Task contains one or more window fragments

- Closing/pending/opening windows in T<sub>2</sub>
- Workers process fragments incrementally

## **Merging Window Fragment Results**

#### Idea: Decouple task size from window size/slide

- Assemble window fragment results
- Output them in correct order



Worker ABstrast Tresettalts angelse wits (notrigg to the switch of the s

## **SABER: Window Performance**

#### select AVG(S.1) from S [rows 1024 slide x]



## Roadmap

Introduction to Event-Based Systems

**Challenge 1: Performance** How to exploit **parallelism on modern hardware** independently of processing semantics?

Challenge 2: Complex Algorithms How to support online machine learning algorithms over events?

Conclusions

Peter Pietzuch - Imperial College London

## **Supporting Online Machine Learning**

#### **Online recommender system**

- Recommendations based on past user ratings
- Eg based on collaborative filtering (cf Netflix, Amazon, ...)



What programming abstraction to use to specify the algorithm?

## **Programming Models For Event Processing?**



#### Peter Pietzuch – Imperial College London

## **Online Collaborative Filtering In Java**

Update with new ratings

|        | Item-A | Item-B |
|--------|--------|--------|
| User-A | 4      | 5      |
| User-B | 0      | 5      |

User-Item matrix (UI)



Matrix userItem = new Matrix(); Matrix coOcc = new Matrix();

#### 

#### Vector processRecEvent(int user) {

Vector userRow = **userItem**.getRow(user); Vector userRec = **coOcc**.multiply(userRow); return userRec;

Co-Occurrence matrix (CO)

## **Collaborative Filtering In Spark (Java)**

```
// Build the recommendation model using ALS
```

int rank = 10; int numIterations = 20; MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), rank, numIterations, 0.01);

```
// Evaluate the model on rating data
JavaRDD<Tuple2<Object, Object>> userProducts = ratings.map(
 new Function<Rating, Tuple2<Object, Object>>() {
  public Tuple2<Object, Object> call(Rating r) {
   return new Tuple2<Object, Object>(r.user(), r.product());
JavaPairRDD<Tuple2<Integer, Integer>, Double>predictions = JavaPairRDD.fromJavaRDD(
 model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map(
  new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
   public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
    return new Tuple2<Tuple2<Integer, Integer>, Double>(
      new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
));
JavaRDD<Tuple2<Double, Double>> ratesAndPreds = JavaPairRDD.fromJavaRDD(ratings.map(
  new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
   public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
    return new Tuple2<Tuple2<Integer, Integer>, Double>(
      new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
)) join(predictions) values();
```

## **Collaborative Filtering In Spark (Scala)**

```
// Build the recommendation model using ALS
val rank = 10
val numlterations = 20
val model = ALS.train(ratings, rank, numlterations, 0.01)
// Evaluate the model on rating data
val usersProducts = ratings.map {
 case Rating(user, product, rate) => (user, product)
val predictions =
 model.predict(usersProducts).map {
  case Rating(user, product, rate) => ((user, product), rate)
val ratesAndPreds = ratings.map {
 case Rating(user, product, rate) => ((user, product), rate)
}.join(predictions)
```

All event data is immutable, no fine-grained model updates

#### Imperial, SIGMOD'13 Processing State As First Class Citizen



State elements (SEs) are mutable in-memory data structures

- Tasks have local access to SEs
- SEs can be shared between tasks

## **Challenges With Large Processing State**



#### State will not fit into single node

#### How to handle distributed state in a scalable fashion?

## **Partitioned State Elements**

Idea: Partitioned SEs are split into disjoint partitions

User-Item matrix (UI)



# State **partitioned** according to partitioning key



Dataflow **routed** according to hash function

## **Partial State Elements**

Partial SEs are replicated (when partitioning is not possible)

Co-Occurrence matrix (CO)

|        | Item-A | Item-B |
|--------|--------|--------|
| Item-A | 1      | 1      |
| Item-B | 1      | 2      |



- Replicas kept weakly consistent

Access to partial SEs either local or global



Events sent to one



**Global** access: Events sent to all

Peter Pietzuch – Imperial College London

## USENIX ATC'14 Scalable & Elastic Event Processing (SEEP)



## **SEEP: Online Logistic Regression**

100 GB training dataset for classification

Deployed on Amazon EC2 ("m1.xlarge" VMs with 4 vCPUs and 16 GB RAM)



SEEP has comparable throughput to Spark despite mutable state

## **Conclusions I**

Event-based systems are a crucial part of many data processing stacks

- Many applications and services require real-time view of event streams
- Batch processing models increasingly replaced by event processing

Interesting tension between performance and algorithmic complexity



## **Conclusions II**

#### 1. Modern parallel hardware (multicore CPUs/GPUs) raises challenges

- New event-based system designs must exploit data parallelism
- But must not couple performance with processing semantics
- Principled window handling in parallel event processing

#### 2. Online machine learning over events is killer app

- Complex streaming applications require **expressive programming models**
- Want to offer natural programming abstractions to users

## Stateful event processing for machine learning

## **Acknowledgements – LSDS Group**











Peter Pietzuch

<prp@doc.ic.ac.uk> http://lsds.doc.ic.ac.uk





## Thank you! Any Questions?

Peter Pietzuch – Imperial College London